Extensions 1→N→G→Q→1 with N=C2xHe3 and Q=C22

Direct product G=NxQ with N=C2xHe3 and Q=C22
dρLabelID
C23xHe372C2^3xHe3216,115

Semidirect products G=N:Q with N=C2xHe3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xHe3):C22 = C2xC32:D6φ: C22/C1C22 ⊆ Out C2xHe3186+(C2xHe3):C2^2216,102
(C2xHe3):2C22 = C22xC32:C6φ: C22/C2C2 ⊆ Out C2xHe336(C2xHe3):2C2^2216,110
(C2xHe3):3C22 = C22xHe3:C2φ: C22/C2C2 ⊆ Out C2xHe336(C2xHe3):3C2^2216,113

Non-split extensions G=N.Q with N=C2xHe3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xHe3).1C22 = He3:2Q8φ: C22/C1C22 ⊆ Out C2xHe3726-(C2xHe3).1C2^2216,33
(C2xHe3).2C22 = C6.S32φ: C22/C1C22 ⊆ Out C2xHe3366(C2xHe3).2C2^2216,34
(C2xHe3).3C22 = He3:2D4φ: C22/C1C22 ⊆ Out C2xHe3366+(C2xHe3).3C2^2216,35
(C2xHe3).4C22 = He3:(C2xC4)φ: C22/C1C22 ⊆ Out C2xHe3366-(C2xHe3).4C2^2216,36
(C2xHe3).5C22 = He3:3D4φ: C22/C1C22 ⊆ Out C2xHe3366(C2xHe3).5C2^2216,37
(C2xHe3).6C22 = He3:3Q8φ: C22/C2C2 ⊆ Out C2xHe3726-(C2xHe3).6C2^2216,49
(C2xHe3).7C22 = C4xC32:C6φ: C22/C2C2 ⊆ Out C2xHe3366(C2xHe3).7C2^2216,50
(C2xHe3).8C22 = He3:4D4φ: C22/C2C2 ⊆ Out C2xHe3366+(C2xHe3).8C2^2216,51
(C2xHe3).9C22 = C2xC32:C12φ: C22/C2C2 ⊆ Out C2xHe372(C2xHe3).9C2^2216,59
(C2xHe3).10C22 = He3:6D4φ: C22/C2C2 ⊆ Out C2xHe3366(C2xHe3).10C2^2216,60
(C2xHe3).11C22 = He3:4Q8φ: C22/C2C2 ⊆ Out C2xHe3726(C2xHe3).11C2^2216,66
(C2xHe3).12C22 = C4xHe3:C2φ: C22/C2C2 ⊆ Out C2xHe3363(C2xHe3).12C2^2216,67
(C2xHe3).13C22 = He3:5D4φ: C22/C2C2 ⊆ Out C2xHe3366(C2xHe3).13C2^2216,68
(C2xHe3).14C22 = C2xHe3:3C4φ: C22/C2C2 ⊆ Out C2xHe372(C2xHe3).14C2^2216,71
(C2xHe3).15C22 = He3:7D4φ: C22/C2C2 ⊆ Out C2xHe3366(C2xHe3).15C2^2216,72
(C2xHe3).16C22 = C2xC4xHe3φ: trivial image72(C2xHe3).16C2^2216,74
(C2xHe3).17C22 = D4xHe3φ: trivial image366(C2xHe3).17C2^2216,77
(C2xHe3).18C22 = Q8xHe3φ: trivial image726(C2xHe3).18C2^2216,80

׿
x
:
Z
F
o
wr
Q
<