Extensions 1→N→G→Q→1 with N=C2×He3 and Q=C22

Direct product G=N×Q with N=C2×He3 and Q=C22
dρLabelID
C23×He372C2^3xHe3216,115

Semidirect products G=N:Q with N=C2×He3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊C22 = C2×C32⋊D6φ: C22/C1C22 ⊆ Out C2×He3186+(C2xHe3):C2^2216,102
(C2×He3)⋊2C22 = C22×C32⋊C6φ: C22/C2C2 ⊆ Out C2×He336(C2xHe3):2C2^2216,110
(C2×He3)⋊3C22 = C22×He3⋊C2φ: C22/C2C2 ⊆ Out C2×He336(C2xHe3):3C2^2216,113

Non-split extensions G=N.Q with N=C2×He3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2×He3).1C22 = He32Q8φ: C22/C1C22 ⊆ Out C2×He3726-(C2xHe3).1C2^2216,33
(C2×He3).2C22 = C6.S32φ: C22/C1C22 ⊆ Out C2×He3366(C2xHe3).2C2^2216,34
(C2×He3).3C22 = He32D4φ: C22/C1C22 ⊆ Out C2×He3366+(C2xHe3).3C2^2216,35
(C2×He3).4C22 = He3⋊(C2×C4)φ: C22/C1C22 ⊆ Out C2×He3366-(C2xHe3).4C2^2216,36
(C2×He3).5C22 = He33D4φ: C22/C1C22 ⊆ Out C2×He3366(C2xHe3).5C2^2216,37
(C2×He3).6C22 = He33Q8φ: C22/C2C2 ⊆ Out C2×He3726-(C2xHe3).6C2^2216,49
(C2×He3).7C22 = C4×C32⋊C6φ: C22/C2C2 ⊆ Out C2×He3366(C2xHe3).7C2^2216,50
(C2×He3).8C22 = He34D4φ: C22/C2C2 ⊆ Out C2×He3366+(C2xHe3).8C2^2216,51
(C2×He3).9C22 = C2×C32⋊C12φ: C22/C2C2 ⊆ Out C2×He372(C2xHe3).9C2^2216,59
(C2×He3).10C22 = He36D4φ: C22/C2C2 ⊆ Out C2×He3366(C2xHe3).10C2^2216,60
(C2×He3).11C22 = He34Q8φ: C22/C2C2 ⊆ Out C2×He3726(C2xHe3).11C2^2216,66
(C2×He3).12C22 = C4×He3⋊C2φ: C22/C2C2 ⊆ Out C2×He3363(C2xHe3).12C2^2216,67
(C2×He3).13C22 = He35D4φ: C22/C2C2 ⊆ Out C2×He3366(C2xHe3).13C2^2216,68
(C2×He3).14C22 = C2×He33C4φ: C22/C2C2 ⊆ Out C2×He372(C2xHe3).14C2^2216,71
(C2×He3).15C22 = He37D4φ: C22/C2C2 ⊆ Out C2×He3366(C2xHe3).15C2^2216,72
(C2×He3).16C22 = C2×C4×He3φ: trivial image72(C2xHe3).16C2^2216,74
(C2×He3).17C22 = D4×He3φ: trivial image366(C2xHe3).17C2^2216,77
(C2×He3).18C22 = Q8×He3φ: trivial image726(C2xHe3).18C2^2216,80

׿
×
𝔽